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Abstract. In this note we focus attention on risk-sensitive approach to an
extended version of the Ramsey growth model. In contrast to the standard
Ramsey model we assume that every splitting of production between consump-
tion and capital accumulation is influenced by some random factor governed
by transition probabilities depending on the current value of the accumulated
capital and possibly on some (costly) decisions. Moreover, we assume that also
some additional (expensive) interventions of the decision maker are possible
for changing the depreciation rate of the capital. Finding optimal policy of the
extended model can be then formulated as finding optimal policy of a highly
structured Markov decision process. Unfortunately usual optimization crite-
ria for Markov decision processes cannot reflect variability-risk features of the
problem. To this end, we indicate how finding policies yielding maximal risk-
sensitive rewards, i.e., if the stream of undiscounted one-stage rewards/costs is
evaluated by an exponential utility function, can be also performed.
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1 Introduction and summary

The heart of the seminal paper of F. Ramsey [10] on mathematical theory of saving is an economy
producing output from labour and capital and the task is to decide how to divide production between
consumption and capital accumulation to maximize the global utility of the consumption. Ramsey’s
model is purely deterministic originally considered in continuous-time setting; Ramsey suggested some
variational methods for finding an optimal policy how to divide the production between consumption and
capital accumulation.

In the present note we formulate the Ramsey model in the discrete-time setting similarly as in the
recent literature on economic growth models (see e.g. Le Van and Dana [3], Heer and Maufer [4] or
Majumdar, Mitra, and Nishimura [8]). Moreover, in contrast to the standard Ramsey’s model we assume
that every splitting of production between consumption and capital accumulation is influenced by some
random factor; in particular, governed by transition probabilities depending on the current value of the
accumulated capital and possibly on some (costly) decisions. Furthermore, we assume that also some
additional (expensive) interventions of the decision maker are possible for changing the depreciation rate
of the capital. Finding optimal policy of this model can be then formulated as finding optimal policy
of a highly structured Markov decision process. Unfortunately, usual optimization criteria for Markov
decision chains as total discounted or average rewards/costs cannot reflect variability-risk features of the
problem. To this end, we focus attention on policies yielding maximal risk-sensitive rewards, i.e., if the
stream of undiscounted one-stage rewards/costs is evaluated by an exponential utility function.

This note is structured as follows. In Section 2, we formulate the classical Ramsey problem in the
discrete-time setting. Section 3 presents an extended version of the growth model. In the extended
version we assume that the development of the economy over time is described by a Markov reward chain
with possible (costly) decisions. Some facts on economic decisions and utility functions are discussed in
Section 4. Basic facts on optimal decisions in the extended growth model along with discretization of the
model important for numerical solution are contained in Section 5, followed by Conclusions.
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2 Classical Ramsey growth model

We consider at discrete time points ¢ = 0,1, ..., an economy in which at each time ¢ there are L; (merely
identical) consumers with consumption ¢; per individual. The number of consumers grow very slowly in
time, i.e. Ly = Lo(1+ n)t for t with a := (1 4+ n) =~ 1. The economy produces at time ¢ gross output Y;
using only two inputs: capital K; and labour L; = Lo(1 + n)t. A production function F(Kj, L;) relates
input to output, i.e.

Y: = F(K:, L) with Ko >0, Lo >0 given. (1)

We assume that F'(+, ) is a strictly increasing concave twice differentiable homogeneous function of degree
one, i.e. F(0K,0L) =0F (K, L) for any 6 € R.
The output must be split between consumption Cy; = ¢;L; and gross investment Iy, i.e.

Ct+It S}Q:F(Kt,.[/t) (2)

Investment I; is used in whole (along with the depreciated capital K;) for the capital at the next time
point ¢t + 1. In addition, capital is assumed to depreciate at a constant rate ¢ € (0,1), so capital related
to gross investment at time t + 1 is equal to

Kt+1 = (1 - 5)Kt + It~ (3)

In what follows let k; := K;/L; be the capital per consumer at time ¢, and similarly let y; := Y;/L;
be the per capita output at time ¢. Recalling that the production function F(-,-) is assumed to be
homogeneous of degree one, then f(k;) := F(k:, 1) denotes the per capita production per unit time. In
virtue of (2), (3) we get

e+ (Lt n)kpr — (1= 0)ke <ye = f(ke), (4)
and if we set for simplicity & = (1 4+ n) = 1 then (4) can be written as
et + ki — (1= 0)kt <y = flke). (5)

The aim is to find a rule how to split production between consumption and capital accumulation that
maximizes for the given time horizon T the utility function

U(co,...,cr) of asingle consumer. (6)
Recall that the utility function Ul(cy,...,cr) is real, strictly increasing and concave function in all its
arguments cg, ..., cr and if all ¢; = 0 then also U(cg, ..., cr) = 0.

As we shall see later in virtue of the recursive form of the formulas (4), (5), the problem is much easier
to solve if the utility function is additive, i.e. if preferences for consumption of a single consumer (resp.
for the considered number of L; consumers) are taken for the considered time horizon 7" in the form

T

Uco,...,cer) =Y ulc;) (resp. Ulcg,...,cr) = Lo Z () u(cy).) (7)
t=0 t=0

In the above formulation we assume that the per capita production function f(k) and the consumption
function wu(c) fulfil some standard assumptions on production and consumption functions, in particular,
that:

AS 1. The function u(c) : R* — R is twice continuously differentiable and satisfies u(0) = 0. Moreover,
u(c) is strictly increasing and concave (i.e., its derivatives satisfy v/(-) > 0 and v”(-) < 0) with «/(0) = 400
(so-called Inada Condition).

AS 2. The function f(k) : RT — R is twice continuously differentiable and satisfies f(0) = 0. Moreover,
f (k) is strictly increasing and concave (i.e., its derivatives satisfy f/(-) > 0 and f”(-) < 0) with f'(0) =
M < 400, limg 00 f/(k) < 1. Hence, if f'(-) > 1 there exists k* such that f'(k*) = k*.

Since u(-) is increasing (cf. assumption AS 1) in order to maximize global utility of the consumers is
possible to replace (5) by the (nonlinear) difference equation

kt+1 — (]. — 5)kt — f(]ﬂt) = —Ct with ko >0 given (8)



or equivalently for f(k) := f(k)+ (1 — &)k by

kt+1 — f(kt) = —Ct with ko given, (9)
where ¢; (t =0,1,...) with ¢; € [0, f(ki—1)] is selected by the decision maker.

Up to now the system described above is purely deterministic; hence the initial capital kg along with
the control policy ¢; fully determines development of (k¢, ¢;) over time.

3 Extended version of the growth model

Unfortunately, in the real-life situations also some random shocks or imprecisions should be considered.
For this reason, we shall assume that for a given value of k; we obtain the output value y; with some
uncertainty; in particular we assume that y; € [fmin(kt), fmax(kt)] (i-e. fmin(*) < f(©) < fmax(:); AS 2
also hold for fe(k)). Obviously, better results can be obtained if we replace the rough estimates of y;
generated by means of fiax(k:) and fuin(k:) by a more detailed information on the (random) output y;
generated by the capital k;. We assume that k; < Emax, ¥t < Ymax for t =0,1,... .

To this end we shall assume that in (5) y: = f(k¢) is replaced by y; = x(k;), where X = {z(-)} is a
Markov process with state space Z; C R and transition probabilities p(y|k) from state k € Z; to state
y € Io C R such that p(y|k:) > p(ylk:) for each y # y, = f(k:) (obviously, - .7 p(ylk) = 1 for each
k € Z;). Such an extension well corresponds to the models introduced and studied in [14] and also in
[4, 8]. Moreover, we assume that the current value of the total output y; is known to the decision maker
and then the recourse decision (intervention) at a cost $(y, k) may be taken to reach the desired value of
kiy1 = ys — s + (1 — )k, for sure. If no intervention is made then the desired value k;y; will be reached
with probability p(k:11|y:) < 1, we assume that p(k|y:) < p(key1|y:) for each k # iy with p(k|ly:) =0
for k > ki+1. Up to now we have assumed that the transition probabilities cannot be influenced by
the decision maker. In what follows we extend the model in such a way that p(y|k) will be replaced by
p(ylk,d) for d € D ={1,2,...,D} and some cost, denoted s(k,d), will be accrued to the decision d € D.
Similarly, f(k) should be replaced by f(k,d).

So the development of the considered system over time is given by the following diagram

s(k,d) 5(y,k)
p(ylk,d) p(kly) ~
k=k ————y=1y k= ki

The above model can be also treated as a structured controlled Markov reward process X with compact
state space Z = I UZy (with Z; N Zy = (), finite set D = {0,1,..., D} of possible decisions (actions) in
each state k € 7y, possible interventions in state y € Zo, and the following transition and cost structure:

p(ylk,d) : transition probability k € Z; — y € Z, if decision d € D is selected,
s(k,d) : cost of decision d € D in state k € I,
r(y, k|k) : one-stage reward obtained if from state k € Z; state y € Ty is reached and finally

with respect to the current value of y € Zy capital ki1 := k is available, obviously

5(y, l::) : cost for intervention in state y € Z then the desired capital kel is available,
p(/;;|y) : transition probability y € o — k € Z; if no intervention is taken in state y € Zo;
if an intervention is taken then p(kly) =1 for k =y —c+ (1 —0)k,
F(k|k,d) : expected value of the one-stage reward obtained in state k if decision d € D
is selected in state k and kyyq1 := l~€; in particular
rFkd) = [ p(dylid)futy + (- )k~ B
y€ls
7:(I~c|k7 d): total expected reward earned by transition from state k to state k, including

possible intervention in state y € Zy and cost of decision d € D in state y € Is,

ie., F(l?:\k,d):f(lzz\k,d)fs(k,d)f/ . p(dylk,d)s(y, k).



Policy controlling development of the economy over time modelled by the Markov process X described
above, say 7, is a rule how to select decision (actions) in each state. Policy 7 is then fully identified by
a sequence {d,,7 =0,1,...} of decisions taken in state k € 7; and possible interventions in state y € Zo.
If we restrict on stationary policies, i.e. the rules selecting actions only with respect to the current state
of Markov process X, then the development of the economy over time is described by a homogeneous
Markov process.

4 Economic decisions and utility functions

Economic decisions are usually based on the outcome, say £, as viewed by the decision maker represented
by an appropriate utility function. Recall that utility functions, say u(-) assigning a real number to each
possible outcome, are monotonically increasing and concave (cf. AS 1), i.e., we assume that larger values
of outcome are preferred.

In case of stochastic systems outcome £ is a random variable and we consider expectation of utilities
assigned to (random) outcomes, i.e. the value Eu(). Certain (or certainty) equivalent, say Z(§), is then
defined by u(Z(€)) := Eu(&) (in words, certainty equivalent is the value, whose utility is the same as the
expected utility of possible outcomes).

For handling real life models decision analysts must be able to express u(z) in a concrete form. Typical
utility functions are:

e Linear function: u(x) = a+ bxr where b >0
e Quadratic functions(z) = a + br — cz® where b >0, ¢>0 for z € [0,b/(2¢c)].
e Logarithmic function: w(z) =a+bln(z +¢) where b>0, ¢c>0.
e Fractional function: u(z) =a— % where b >0, ¢>0
x
z'=¢  for O<a<l1
e The function: u(z) = Inz for a=1
—z!=® for a>1
o Exponential function: u(z) = —e~* with a >0
Observe that in the above family of utility functions only linear utility function (with ¢ = 0) and

exponential utility functions are separable and hence suitable for sequential decisions. In particular, it
holds for any =,y € R

u(lz+y) = wu(x)+uly) for linear utility function with a =0

wxz+y) = ulx)- u(y) for exponential utility function

Furthermore, exponential utility functions

e are the most widely used non-linear utility functions, cf. Corner, J.L. and Corner, P.D. [2],

e in most cases an appropriately chosen exponential utility function is a very good approximation for
general utility function, cf. Kirkwood [6].

Unfortunately, considering stochastic models, in contrast to exponential utility functions, linear utility
functions cannot reflect variability-risk features of the problem. Introducing the so-called risk aversion
coefficient v € R then the utility u(£) assigned to a random outcome & for exponential utility functions,
as well as linear utility functions, can be also written in the following more compact form

) (sign ) exp(v§), ify#0
) = { ¢ for v = 0. (10)

Obviously u”(-) is continuous and strictly increasing, and

e convex for v > 0, so-called  risk seeking case
e concave for v < 0, so-called risk aversion case



If exponential utility (10) is considered, then for the corresponding certainty equivalent Z7(§) given by

u?(Z7(§)) = E[(sign v) exp(7§)]

we have
> In{Efexp(v¢)]}, if 7 #0
Z7(€) = (11)
E[¢] for v = 0.

Since exponential utility functions preserve the nice “separability” property of the linear utility functions
and according to the selected “risk aversion coefficient” prefer “large” or “small” outcomes, they are
extremely suitable for employing in multistage optimization problems.

5 Optimization of the extended growth model
5.1 Risk-sensitive optimality in the growth model

Suppose that in (11) £" = Z;:Ol & where ;’s is a sequence of random rewards/costs generated by
the Markov reward process with parameters given in Section 3, Z7(£") is the corresponding certainty
equivalent and g(£") := n=1Z7(£") is the mean value of the certainty equivalent Z7(£"). Obviously, in
virtue of AS1, AS2 also in the “stochaticized” model in Section 3 the values r(y, k|k) must be bounded,
say 0 < r(y, k|k) < M; similarly we assume that 0 < 5(k,d) < m. Hence also lim supn=17(k|k,d) < M.
n—oo

For the risk neutral case (i.e. if the risk aversion coefficient v = 0) we are interested in policies
maximizing mean reward if the time horizon tends to infinity. If the state space is discrete, there is
a overwhelming literature on this classical problem of stochastic dynamic programming (see e.g. [9]);
attention has been also focused on models with compact state space (see e.g. [5]). In particular, since the
action set is finite and one-stage rewards and costs are bounded, under some mild ergodicity conditions®
asymptotic mean reward is independent of the starting state and maximal asymptotic mean reward, say
gt = nan;o n~E(£™) can be found as a solution, say (g*, h(k*)), of the optimality equation (see e.g. [5])

g+ h(k) = max / p(dk|k, d)[7(k|k,d) + h(E)], for any k,k € T (12)
deD 15611

where p(k|k,d) = [, ;. p(dylk, d)p(k|y).

Unfortunately considerably less attention has been paid to so-called risk-sensitive case (where the risk
aversion coefficient v # 0) originally studied in the seminal paper [7] for the models with finite state and
action spaces and irreducible transition probability matrices. As it was shown in the recent paper [1]
under mild assumptions it can be shown that even for models with compact state space policy maximizing
mean certain equivalent also exists in the family of stationary policies being a solution of the following
Poisson equation

eI th(k) — max/ p(dk|k, d)e[F(’_“lk’d)Jrh(f“)], for any k,k € Z;. (13)
deD ];EIl

Unfortunately, for concrete numerical calculation is seems that the best way is to discretize the model
and solve the problem as risk-sensitive Markov decision process with finite state and action spaces.

5.2 Discretized growth model

In what follows, we shall assume that the values of k, and y take on only discrete values (cf. [11]). In
particular, we assume that for sufficiently small A > 0 there exists nonnegative integers ¢, k;, and 7
such that for every t = 0,1, ... it holds:

GA = ¢y, kA = kg, and ;A = yp with ky < K := kpay/A and similarly g; <Y = ymax/A.

In what follows we assume that at time ¢ only values & + ¢A, k; + ¢A and 3; + ¢A can occur where
{={-K,-K+1,...,0,..., K — 1, K} and integer K is given. Then the probabilities p(y|k,d) and

1We may assume existence of state k* specified in AS2 such that p(k*|k,d) > ¢ > 0 for any pair k, d.



p(k

ly) of Section 3 describing the stochastic behaviour of the extended model take on only a finite

number of values.

Equations (12) and (13) then take on the form

g+h(k) = max Z p(k|k, d)[7(k|k,d) + h(k)], for any k,k € Ty (14)
ke,
g+h(k)  _ S0 [7 (K[ e,d)+h(F)] i
e gleagz p(k|k,d)e ) for any k,k € 7, (15)
ke,

where p(k|k,d) = 3, 7, p(ylk, d)p(kly).

6

Conclusions

In this paper we focus are attention on extended version of the Ramsey model with exponential perfor-
mance functions. It was shown that along with standard performance function (i.e. the risk neutral case
with risk aversion coefficient v = 0) also methods for risk-sensitive case (i.e. when risk aversion coefficient
v # 0) can be successfully employed.
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